Universal Gravitation and Kepler's Laws

Objectives

- Discuss Newton's universal law of gravity, and understand that it is an attractive force between two particles separated by a distance, r .
- State and interpret each of Kepler's three laws of planetary motion.
- Use a sketch to illustrate the motion of a typical planet and calculate orbital periods using tabulated values of planetary data.
- Describe the nature of Newton's Universal law of gravity and the method of deriving Kepler's sthird law from this law of circular orbits.

Newton's Universal Law of Gravity

$$
F=G \frac{m_{1} m_{2}}{r^{2}}
$$

Where...
$\mathrm{m}_{1}, \mathrm{~m}_{2}$ - masses of the two objects (kg)
r - distance between the two centers of masses (m)
G - Universal Gravitational constant ($6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$)

- Since we have two objects interacting, what force is this?
- Based on Newton's 3rd Law, all forces come in pairs.
- Law of gravity gives the magnitude of the attractive force between the objects.
- Directed toward each other along the line connecting them!

The Epiphany of The Apple
In addition to developing his three laws of motion, Newton also investigated the motion of the planets and the Moon.

- Newton' s Law of Gravity is an extension of projectile motion.
- Let's say we shoot a cannon ball from the top of a mountain. What will happen?
 - Falls to the ground!
- What happens if it is shot faster?
- Eventually makes it all the way around!

The force keeping the moon in orbit is the same force
that pulls an apple toward Earth!
The force keeping the moon in orbit is the sa
that pulls an apple toward Earth!

The Cavendish Experiment

Newton figured out that the force between the moon and the Earth was diluted by distance and that the relationship between force and distance was an inverse square.

- Also figured out that the force is proportional to the product of the masses.
- DID NOT figure out the gravitational constant.

Original

Current

Cavendish was trying to figure out the structure of the Earth, so he needed its mass. He was able to do this if Newton's law of gravity proved correct.
He calculated the value of G to be $6.71 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$ which compared to the accepted value of $6.672 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$ was only off by about 1%.

Weighing The Earth Cavendish's experiment was referred to as weighing the Earth because the results allowed him to figure out the Earth's mass. $\begin{gathered} \mathrm{F}_{\mathrm{g}}=\mathrm{G} \frac{\mathrm{mM}_{\mathrm{E}}}{\mathrm{r}^{2}} \quad \text { and } \begin{array}{c} \mathrm{F}_{\mathrm{g}}=\mathrm{mg} \\ \mathrm{Mg}=\mathrm{G} \frac{\mathrm{~m}_{\mathrm{E}}}{\mathrm{r}^{2}} \longrightarrow \mathrm{~g}=\mathrm{G} \frac{\mathrm{M}_{\mathrm{E}}}{\mathrm{r}^{2}} \\ \mathrm{M}_{\mathrm{E}}=\frac{\mathrm{gr}^{2}}{\mathrm{G}}=5.98 \times 10^{24} \mathrm{~kg} \end{array} . \end{gathered}$ Using this value, Cavendish was able to calculate the average density of the Earth. $\begin{aligned} \rho_{\mathrm{E}}=\frac{\mathrm{M}_{\mathrm{E}}}{\frac{4}{3} \pi \mathrm{r}^{3}} \longrightarrow & \rho_{\mathrm{E}}=5500 \mathrm{~kg} / \mathrm{m}^{3} \\ & \rho_{\text {crust }}=2700 \mathrm{~kg} / \mathrm{m}^{3} \end{aligned}$ To get this average, the core's density must be greater!		

Using The Universal Law

- The Universal Law of Gravity describes the interaction between two particles.
- Most of the objects that we deal with are a collection of particles, not individual particles.
- Law works when the objects are spherical.
- Acts the same as if everything was condensed to the center.
- Works well for most moons, planets, and stars.
- Since Gravity is an attractive force between two objects of mass, there can be more than one force of gravity acting on a given object.
- Use the law to determine the force of gravity for each interaction.
- Add the forces using vector addition.

What's The Attraction?

Let's say it's Valentines Day, and a couple is standing on the dance floor. If the mass of one is 60 kg while the other is 75 kg , what is the force of gravity between them if they are 30 cm apart?

$$
\begin{gathered}
\mathrm{F}_{\mathrm{g}}=\mathrm{G} \frac{\mathrm{~m}_{1} \mathrm{~m}_{2}}{\mathrm{r}^{2}} \\
\mathrm{~F}_{\mathrm{g}}=\left(6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}\right) \frac{(60 \mathrm{~kg})(75 \mathrm{~kg})}{(.30 \mathrm{~m})^{2}} \\
\mathrm{~F}_{\mathrm{g}}=3.3 \times 10^{-6} \mathrm{~N}
\end{gathered}
$$

- If the dance floor is frictionless, how long would it take for them to reach each other?
$x=1 / 2 a t^{2}+v_{0} t+x_{0}$

$$
x_{P}=1 / 2 a_{1} t^{2}+1 / 2 a_{2} t^{2}
$$

$$
\begin{aligned}
\mathrm{a}_{1} & =\frac{\mathrm{F}_{\mathrm{g}}}{\mathrm{~m}_{1}} \quad \mathrm{a}_{2}=\frac{\mathrm{F}_{\mathrm{g}}}{\mathrm{~m}_{2}} \\
0.60 & =\left(5.5 \times 10^{-8}\right) \mathrm{t}^{2}+\left(4.4 \times 10^{-8}\right) \mathrm{t}^{2} \\
\mathrm{t} & =2462 \mathrm{~s}=41 \mathrm{~min}
\end{aligned}
$$

What's the Acceleration?

- Jupiter's moon, Io, has a mass of $8.93 \times 10^{22} \mathrm{~kg}$ and has a diameter or 3630 km . What is the acceleration due to gravity experienced by an object at Io' s surface?

Info:
$\mathrm{m}=8.93 \times 10^{22} \mathrm{~kg}$
$\mathrm{d}=3630 \mathrm{~km} \longrightarrow \mathrm{r}=1815 \mathrm{~km}$
$\longrightarrow \begin{array}{r}\mathrm{r}=1815 \mathrm{~km} \\ \mathrm{r}=1,815,000 \mathrm{~m}\end{array}$
$F_{g}=G \frac{\mathrm{mM}_{\mathrm{I}}}{\mathrm{r}^{2}}$ and $\mathrm{F}_{\mathrm{g}}=\mathrm{mg}$
$\mathrm{g}=\mathrm{G} \frac{\mathrm{M}_{\mathrm{E}}}{\mathrm{r}^{2}} \longrightarrow \mathrm{~g}=\left(6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}\right) \frac{8.93 \times 10^{22} \mathrm{~kg}}{(1,815,000 \mathrm{~m})^{2}}$
$\mathrm{g}=1.81 \mathrm{~m} / \mathrm{s}^{2}$

Kepler's Laws

All three empirical laws were developed looking at the planets that orbited the sun. They have been found to be more universal in that they can be applied to satellites orbiting the planets.

1. Law of Orbits 2. Law of Equal Area 3. Law of Periods

Law 1: Law of Orbits

States: All planets move in elliptical orbits, with the sun at one focus.

Supported by: Energy, Angular
Momentum, and law of gravity.

Law 3: Law of Periods

States: For circular orbits, the square of the period of a planet is proportional to the cube of the semimajor axis of its orbit.

$$
\mathrm{T}^{2}=\mathrm{Ka}^{3} \quad \text { Where } \mathrm{K} \text { is a constant. }
$$

Supported by: Law of Gravity

In a circular orbit, the force of gravity acts as the centripetal force!

$$
\mathrm{F}_{\mathrm{g}}=\mathrm{G} \quad \frac{\mathrm{~m}_{\mathrm{E}} \mathrm{~m}_{\mathrm{S}}}{\mathrm{R}^{2}} \text { and } \quad \mathrm{F}_{\mathrm{g}}=\mathrm{m}_{\mathrm{E}} \mathrm{a}_{\mathrm{c}}
$$

Planets move slower at aphelion when farther from the sun.

Law 2: Law of Equal Area

States: A line that connects a planet to the sun sweeps out equal area in equal time.

Supported by: Conservation of Angular Momentum

Planets move faster at perihelion when closer to the sun.
\qquad

$$
\mathrm{m}_{\mathrm{E}_{\mathrm{E}}} \mathrm{a}_{\mathrm{c}}=\mathrm{G} \frac{\mathrm{~m}_{E} \mathrm{~m}_{\mathrm{S}}}{\mathrm{R}^{2}} \longrightarrow \frac{\mathrm{v}^{2}}{\mathrm{R}}=\mathrm{G} \frac{\mathrm{~m}_{\mathrm{s}}}{\mathrm{R}^{2}}
$$

Homework!

Section 4.7, 5.5-5.6

- Practice:
- Ch 4: 25, 27, 31
- Ch 5: 33, 35, 37
- Homework!
- Ch 4: 20, 23, 28, 29
- Ch 5: 31, 36, 38, 39

Newton's Not Perfect!

- There are some flaws in Newton' s concept of gravity that led Einstein to develop a different idea.
- According to Einstein...

Gravity is not a force but rather the result of a curvature of space-time by mass.

The amount the space-time continuum is distorted is dependent on the mass.

Often represented as a cloth with large objects resting in it.

The Graviton

Physicists now believe that gravity is the result of mass-less particles known as gravitons.

- Existence has been predicted by string theory.

Which is correct?
Space-time curvature or the graviton?
We Don't Know Yet!

