One Dimensional Motion Worksheet

Solve the following problems on a separate sheet of paper. Show all work using the prescribed problem solving method.

1. A car moving at $10 \mathrm{~m} / \mathrm{s}$ speeds up uniformly to a speed of $30 \mathrm{~m} / \mathrm{s}$ in a time of 5 seconds. What was the car's acceleration?

Answer: $4 \mathrm{~m} / \mathrm{s}^{2}$
2. A bus is moving at a speed of $20 \mathrm{~m} / \mathrm{s}$, when it begins to slow at a constant rate of $5 \mathrm{~m} / \mathrm{s}^{2}$ in order to stop at a bus stop. If it comes to rest at the bus stop, how far away was the bus from the stop?

Answer: 40 m
3. A block starting from rest slides down the length of an 18 m plank with a uniform acceleration of $4.0 \mathrm{~m} / \mathrm{s}^{2}$. How long does the block take to reach the bottom?

Answer: 3.0 sec
4. An airplane initially flying at a speed of $60.0 \mathrm{~m} / \mathrm{s}$ accelerates at $5.0 \mathrm{~m} / \mathrm{s}^{2}$ for 600 meters. What is its velocity after this acceleration?

Answer: $98 \mathrm{~m} / \mathrm{s}$
5. A biker passes a lamppost at the crest of a hill at $+4.5 \mathrm{~m} / \mathrm{s}$. She accelerates down the hill at a constant rate of $+0.40 \mathrm{~m} / \mathrm{s}^{2}$ for 12 s . How far does she move down the hill during this time?

Answer: 83 m
6. A pilot stops a plane in 484 m using a constant acceleration of $-8.0 \mathrm{~m} / \mathrm{s}^{2}$. How fast was the plane moving before braking began?

Answer: 88 m/s
7. Wile E. Coyote has strapped himself to an ACME rocket and is moving along at $25.0 \mathrm{~m} / \mathrm{s}$ in pursuit of the roadrunner. As he is cruising along he realizes that he is heading directly for the edge of a cliff. He drags his feet in order to slow down at a constant rate of $5.86 \mathrm{~m} / \mathrm{s}^{2}$ until he comes to rest. If the cliff is 36.0 meters away, by how much does he overshoot the edge?

Answer: 17.3 m
8. A rocket traveling at $88 \mathrm{~m} / \mathrm{s}$ is accelerated to $132 \mathrm{~m} / \mathrm{s}$ over a 15 second interval. What is its displacement in this time?

Answer: 1650 m
9. A car sits in an entrance ramp to a freeway, waiting for a break in traffic. The driver sees a small gap between two vehicles and accelerates with constant acceleration along the ramp onto the freeway. The car starts from rest, moves in a straight line, and has a speed of $20 \mathrm{~m} / \mathrm{s}$ when it reaches the end of the $120-\mathrm{m}$ ramp. What is the acceleration of the car? Answer: $1.7 \mathrm{~m} / \mathrm{s}^{2}$
a. How much time does it take the car to reach the end of the ramp? Answer: 12 s
b. The traffic on the freeway is moving at a constant speed of $20 \mathrm{~m} / \mathrm{s}$. What distance does traffic travel while the car is moving the length of the ramp?

Answer: 240 m
10. An object starts from rest and accelerates uniformly at $5 \mathrm{~m} / \mathrm{s}^{2}$ for 3 seconds, then continues at a constant speed for 2 s and finally accelerates uniformly at $2 \mathrm{~m} / \mathrm{s}^{2}$ for 3 seconds.
a. Make a graph of the displacement vs. time and the velocity vs. time.
b. Find the final speed of the object.
c. Find the total distance traveled during this 8 -second interval.

Answer: 21 m/s
Answer: 107 m

